Ta’minot zanjirlarini boshqarishda big datadan foydalanishni afzalliklari
DOI:
https://doi.org/10.5281/zenodo.15351538Keywords:
Big Data, ma’lumotlar tahlili, raqobatbardoshlik, mijozlar ehtiyojlari, biznes jarayonlarini optimallashtirish, texnologiyalarni qo‘llash, katta hajmdagi ma’lumotlar, ta’minot zanjiri boshqaruvi, real vaqt rejimida tahlil, qaror qabul qilish, ma’lumotlar vizualizatsiyasi, logistika optimallashtirish, AI integratsiyasi, prognozlash modeli.Abstract
Ko‘p korxonalarda Big Data texnologiyalarini qo‘llashning samaradorligini tahlil qilishda ishlatiladi. Big Data
texnologiyalari katta hajmdagi ma’lumotlarni tezkor qayta ishlash, tahlil qilish va ulardan qaror qabul qilishda foydalanish
imkoniyatini beradi. Maqolada ushbu texnologiyalarning xususiyatlari, amaliy qo‘llanilish sohalari va biznes jarayonlariga
ta’siri o‘rganiladi. Shuningdek, Big Datadan foydalanish natijasida kompaniyalarning raqobatbardoshligini oshirish,
mijozlar ehtiyojlarini aniqlash va biznes jarayonlarini optimallashtirishda erishilgan yutuqlar yoritiladi. Shuningdek, real
hayotiy misollar va statistik ma’lumotlar orqali Big Data qo‘llashning samaradorligi aniq ifodalanadi. Bundan tashqari,
ta’minot zanjirlarini optimallashtirishda Big Data texnologiyalarining logistikani boshqarish, zahiralarni optimallashtirish,
talab va taklifni prognoz qilish kabi sohalardagi roli alohida ta’kidlanadi. Shuningdek, maqolada Big Data joriy etish
jarayonida yuzaga keladigan asosiy muammolar va ularni hal etish yo‘llari ham ko‘rib chiqiladi.
References
https://pixelplex.io/blog/big-data-statistics/
https://www.statista.com/statistics/254266/global-big-data-market-forecast/
https://www.statista.com/chart/18328/big-data-business-analytics-revenue/
Waller, M.A., & Fawcett, S.E. (2013). Data science, predictive analytics, and big data: a revolution that will transform
supply chain design and management.
https://doi.org/10.1016/j.jom.2013.05.003
McKinsey Global Institute. Big data: The next frontier for innovation, competition, and productivity.
for-innovation
Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of
Industry 4.0.
https://www.sciencedirect.com/science/article/pii/S0925527319312534
G‘ulomov M.G‘. (2022). Raqamli iqtisodiyot sharoitida ta’minot zanjirlarini boshqarishning innovatsion yondashuvlari. –
Toshkent davlat iqtisodiyot universiteti ilmiy jurnali.
Qodirov S.A. (2021). Logistika tizimlarida Big Data texnologiyalarining o‘rni va istiqbollari. – “Iqtisodiyot va innovatsion
texnologiyalar” ilmiy-amaliy jurnali, №3.
Choi, T.M., Wallace, S.W., & Wang, Y. (2018). Big Data analytics in operations management. Production and Operations
Management, 27(10), 1868–1881.
https://doi.org/10.1111/poms.12836
Wang, G., Gunasekaran, A., Ngai, E.W.T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain
management: Certain investigations for research and applications. International Journal of Production Economics,
, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
Min, H. (2010). Artificial intelligence in supply chain management: theory and applications. International Journal of
Logistics Research and Applications, 13(1), 13–39. https://doi.org/10.1080/13675560902736537
Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital information at the intersection of Big Data
Analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10–36.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 YASHIL IQTISODIYOT VA TARAQQIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.