RAQAMLI IQTISODIYOT VA IQTISODIY XAVFSIZLIK SHAROITIDA DDOS HUJUMLARIGA QARSHI SUN’IY INTELLEKT AGENTLARINI QO‘LLASH
DOI:
https://doi.org/10.5281/zenodo.18150729Keywords:
Sun’iy intellekt; DDoS hujumlari; SI agentlari; Raqamli iqtisodiyot; Iqtisodiy xavfsizlik; Kiberhimoya; Anomaliyani aniqlash; Moslashuvchan tizimlar; Tizimlarga kirishni aniqlash; Mustahkamlovchi o‘rganish.Abstract
Ushbu maqola sun’iy intellekt (SI) agentlari raqamli iqtisodiyot tizimlarida taqsimlangan xizmatdan voz
kechish (DDoS) hujumlarini kamaytirishda qanday yordam berishini o‘rganadi. Raqamli transformatsiya axborot tizimlariga
tayanishni chuqurlashtirar ekan, DDoS hujumlari muhim infratuzilmalarning barqarorligi va ishonchliligiga jiddiy tahdid
soladi. An’anaviy himoya vositalari zamonaviy DDoS tahdidlarining miqyosi va moslashuvchanligiga qarshi turishda
ko‘pincha yetarli emas (CISA, n.d.).
Tadqiqot SI asosidagi yondashuvlarga e’tibor qaratadi – mashinaviy o‘rganish, adaptiv qaror qabul qilish va ko‘p agentli
hamkorlik orqali DDoS hujumlarini real vaqt rejimida aniqlash va bartaraf etish. Maqolada trafik oqimini tahlil qilish, anomal
faollikni aniqlash, tushuncha o‘zgarishini boshqarish (concept drift) va avtonom javob strategiyalari kabi metodlar yoritilib,
ular moliyaviy xizmatlar, elektron hukumat va biznes infratuzilmasining barqarorligini qanday kuchaytirishi ko‘rib chiqiladi.
Natijalar SI agentlari aniqlash aniqligini oshirishini, tezkor javob berishni ta’minlashini va o‘zgaruvchan tahdidlar fonida
iqtisodiy xavfsizlikni mustahkamlashini ko‘rsatadi. SI asosidagi tizimlar yirik kiberxavflardan raqamli iqtisodiyotlarni himoya
qilishda va barqaror iqtisodiy o‘sishni qo‘llab-quvvatlashda muhim ahamiyatga ega.
References
1. Li, X., Zhao, M., Wang, J., & Zhang, X. (2020). A collaborative intrusion detection mechanism against DDoS attacks
in SDN environments. Journal of Network and Computer Applications, 161, 102630. https://doi.org/10.1016/j.
jnca.2020.102630
2. Canadian Institute for Cybersecurity (CIC). (2019). CIC-DDoS2019 Dataset. University of New Brunswick. https://
www.unb.ca/cic/datasets/ddos-2019.html
3. Rivas, E., Saika, S., Bakht, A., Piplai, A., Bastian, N. D., & Shah, A. (2025). Adapting under fire: Multi-agent reinforcement
learning for adversarial drift in network security. arXiv preprint arXiv:2506.06565. https://arxiv.org/abs/2506.06565
4. Chen, S.-R., Chen, S.-J., & Hsieh, W.-B. (2025). Enhancing machine learning-based DDoS detection through
hyperparameter optimization. Electronics, 14(16), 3319. https://doi.org/10.3390/electronics14163319
5. Qin, Z., Luo, Q., Nong, X., Chen, X., Zhang, H., & Wong, C. U. I. (2023). MAS-LSTM: A multi-agent LSTM-based
approach for scalable anomaly detection in IIoT networks. Processes, 13(3), 753. https://doi.org/10.3390/pr13030753
6. Soltani, M., Khajavi, K., Siavoshani, M. J. J., & Jahangir, A. H. (2024). A multi-agent adaptive deep learning framework
for online intrusion detection. Cybersecurity, 7(1), Article 9. https://doi.org/10.1186/s42400-023-00199-0
7. Aydin, H., Orman, Z., & Aydin, M. A. (2022). A long short-term memory (LSTM)-based distributed denial of service
(DDoS) detection and defense system design in public cloud network environment. Computers & Security, 118,
102725. https://doi.org/10.1016/j.cose.2022.102725
8. Veluchamy, S., & Kathavarayan, R. S. (2022). Deep reinforcement learning for building honeypots against runtime
DoS attack. International Journal of Intelligent Systems, 37(7), 3981–4007. https://doi.org/10.1002/int.22740
9. Boswell, B., Barrett, S., Rajaganapathy, S., Dorai, G., & Qiu, M. (2025). FLARE: Feature-based lightweight aggregation
for robust evaluation of IoT intrusion detection. arXiv preprint arXiv:2504.15375. https://arxiv.org/abs/2504.15375
10. U.S. Cybersecurity and Infrastructure Security Agency (CISA). (n.d.). Understanding Denial-of-Service Attacks. https://
www.cisa.gov/news-events/news/understanding-denial-service-attacks
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 GREEN ECONOMY AND DEVELOPMENT

This work is licensed under a Creative Commons Attribution 4.0 International License.