RAQAMLI IQTISODIYOT VA IQTISODIY XAVFSIZLIK SHAROITIDA DDOS HUJUMLARIGA QARSHI SUN’IY INTELLEKT AGENTLARINI QO‘LLASH

RAQAMLI IQTISODIYOT VA IQTISODIY XAVFSIZLIK SHAROITIDA DDOS HUJUMLARIGA QARSHI SUN’IY INTELLEKT AGENTLARINI QO‘LLASH

Authors

  • Sanjar Bekov

DOI:

https://doi.org/10.5281/zenodo.18150729

Keywords:

Sun’iy intellekt; DDoS hujumlari; SI agentlari; Raqamli iqtisodiyot; Iqtisodiy xavfsizlik; Kiberhimoya; Anomaliyani aniqlash; Moslashuvchan tizimlar; Tizimlarga kirishni aniqlash; Mustahkamlovchi o‘rganish.

Abstract

Ushbu maqola sun’iy intellekt (SI) agentlari raqamli iqtisodiyot tizimlarida taqsimlangan xizmatdan voz
kechish (DDoS) hujumlarini kamaytirishda qanday yordam berishini o‘rganadi. Raqamli transformatsiya axborot tizimlariga
tayanishni chuqurlashtirar ekan, DDoS hujumlari muhim infratuzilmalarning barqarorligi va ishonchliligiga jiddiy tahdid
soladi. An’anaviy himoya vositalari zamonaviy DDoS tahdidlarining miqyosi va moslashuvchanligiga qarshi turishda
ko‘pincha yetarli emas (CISA, n.d.).
Tadqiqot SI asosidagi yondashuvlarga e’tibor qaratadi – mashinaviy o‘rganish, adaptiv qaror qabul qilish va ko‘p agentli
hamkorlik orqali DDoS hujumlarini real vaqt rejimida aniqlash va bartaraf etish. Maqolada trafik oqimini tahlil qilish, anomal
faollikni aniqlash, tushuncha o‘zgarishini boshqarish (concept drift) va avtonom javob strategiyalari kabi metodlar yoritilib,
ular moliyaviy xizmatlar, elektron hukumat va biznes infratuzilmasining barqarorligini qanday kuchaytirishi ko‘rib chiqiladi.
Natijalar SI agentlari aniqlash aniqligini oshirishini, tezkor javob berishni ta’minlashini va o‘zgaruvchan tahdidlar fonida
iqtisodiy xavfsizlikni mustahkamlashini ko‘rsatadi. SI asosidagi tizimlar yirik kiberxavflardan raqamli iqtisodiyotlarni himoya
qilishda va barqaror iqtisodiy o‘sishni qo‘llab-quvvatlashda muhim ahamiyatga ega.

Author Biography

Sanjar Bekov

Toshkent Xalqaro Universiteti mustaqil tadqiqotchisi

References

1. Li, X., Zhao, M., Wang, J., & Zhang, X. (2020). A collaborative intrusion detection mechanism against DDoS attacks

in SDN environments. Journal of Network and Computer Applications, 161, 102630. https://doi.org/10.1016/j.

jnca.2020.102630

2. Canadian Institute for Cybersecurity (CIC). (2019). CIC-DDoS2019 Dataset. University of New Brunswick. https://

www.unb.ca/cic/datasets/ddos-2019.html

3. Rivas, E., Saika, S., Bakht, A., Piplai, A., Bastian, N. D., & Shah, A. (2025). Adapting under fire: Multi-agent reinforcement

learning for adversarial drift in network security. arXiv preprint arXiv:2506.06565. https://arxiv.org/abs/2506.06565

4. Chen, S.-R., Chen, S.-J., & Hsieh, W.-B. (2025). Enhancing machine learning-based DDoS detection through

hyperparameter optimization. Electronics, 14(16), 3319. https://doi.org/10.3390/electronics14163319

5. Qin, Z., Luo, Q., Nong, X., Chen, X., Zhang, H., & Wong, C. U. I. (2023). MAS-LSTM: A multi-agent LSTM-based

approach for scalable anomaly detection in IIoT networks. Processes, 13(3), 753. https://doi.org/10.3390/pr13030753

6. Soltani, M., Khajavi, K., Siavoshani, M. J. J., & Jahangir, A. H. (2024). A multi-agent adaptive deep learning framework

for online intrusion detection. Cybersecurity, 7(1), Article 9. https://doi.org/10.1186/s42400-023-00199-0

7. Aydin, H., Orman, Z., & Aydin, M. A. (2022). A long short-term memory (LSTM)-based distributed denial of service

(DDoS) detection and defense system design in public cloud network environment. Computers & Security, 118,

102725. https://doi.org/10.1016/j.cose.2022.102725

8. Veluchamy, S., & Kathavarayan, R. S. (2022). Deep reinforcement learning for building honeypots against runtime

DoS attack. International Journal of Intelligent Systems, 37(7), 3981–4007. https://doi.org/10.1002/int.22740

9. Boswell, B., Barrett, S., Rajaganapathy, S., Dorai, G., & Qiu, M. (2025). FLARE: Feature-based lightweight aggregation

for robust evaluation of IoT intrusion detection. arXiv preprint arXiv:2504.15375. https://arxiv.org/abs/2504.15375

10. U.S. Cybersecurity and Infrastructure Security Agency (CISA). (n.d.). Understanding Denial-of-Service Attacks. https://

www.cisa.gov/news-events/news/understanding-denial-service-attacks

Downloads

Published

2025-12-01

How to Cite

Bekov , S. (2025). RAQAMLI IQTISODIYOT VA IQTISODIY XAVFSIZLIK SHAROITIDA DDOS HUJUMLARIGA QARSHI SUN’IY INTELLEKT AGENTLARINI QO‘LLASH. GREEN ECONOMY AND DEVELOPMENT, 3(12). https://doi.org/10.5281/zenodo.18150729
Loading...