The methodology for using a PM1-PM10 collection device in Uzbekistan is relevant to the climatic conditions
DOI:
https://doi.org/10.5281/zenodo.15848915Keywords:
PM1, PM10, climate conditions, air pollution, environmental monitoring, industrial development, urbanization, particle collection, health, innovative technologies, monitoring system, air quality, dust concentrationAbstract
A number of factors are important in increasing the relevance of the issue of creating a PM1 and PM10
particle collection device in the climatic conditions of Uzbekistan. The arid and semi-arid climate of Uzbekistan leads to
an increase in the concentration of dust and particles in the air. As a result of climate change, industrial development and
urbanization processes, the level of air pollution is increasing, which requires monitoring of PM1 and PM10 particles.
These particles can negatively affect human health, cause the development of respiratory and cardiovascular diseases.
The growth of industry and the increase in vehicles increases the amount of PM1 and PM10 particles in the air. Monitoring
and collecting particles allows the state and the public to assess the level of air pollution. With the help of modern
technologies, the processes of detecting and collecting PM1 and PM10 particles are being improved. By creating
innovative devices, it is possible to develop effective solutions that are suitable for climatic conditions. This study aims
to analyze the relevance of creating a PM1 and PM10 particle collection device in the climatic conditions of Uzbekistan
References
Abbasi , S., Keshavarzi , B., Moore, F., Hopke , PK, Kelly, FJ, Dominguez, AO, 2020. Elemental and magnetic analyses,
source identification , and oxidative potential of airborne, passive, and street dust particles in Asaluyeh County, Iran.
Sci. Total Environ. 707, 136132. https://doi.org/10.1016/j.scitotenv.2019.136132 .
Alastuey , A., Minguillón , C., Pérez, N., Querol , X., Viana , M., de Leeuw , F., 2011. The European Topic Center on
Air Pollution and Climate Change Mitigation (ETC/ACM) Is a Consortium of European Institutes Under Contract of the
European Environment Agency RIVM UBA-V ÖKO AEAT EMISIA CHMI NILU INERIS PBL CSIC.
Amato, F., Pandolfi , M., Escrig , A., Querol , X., Alastuey , A., Pey , J., Perez, N., Hopke , PK, 2009a. Quantifying road
dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmosphere. Environ. 43,
– 2780. https://doi.org/10.1016/j . atmosenv.2009.02.039 .
Amato, F., Pandolfi , M., Viana , M., Querol , X., Alastuey , A., Moreno, T., 2009b . Spatial and chemical patterns of
PM10 in road dust deposited in urban environment. Atmosphere. Environ. 43, 1650 – 1659. https://doi.org/10.1016/j.
atmosenv.2008.12.009 .
Amato, F., Alastuey , A., Karanasiou , A., Lucarelli , F., Nava, S., Calzolai , G., Severi , M., Becagli , S., Gianelle , VL,
Colombi , C., Alves , C., Custódio , D., Nunes , T., Cerqueira , M., Pio , C., Eleftheriadis , K., Diapouli , C. , E., Reche
, C., Minguillón , MC, Manousakas , MI, Maggos , T., Vratolis , S., Harrison, RM, Querol , X., 2016. AIRUSE-LIFE+: a
harmonized PM speciation and source apportionment in five southern European cities. Atmosphere. Chem. Phys. 16,
–3309 . https://doi.org/10.5194/acp-16-3289-2016 .
Apte , JS, Marshall, JD, Cohen, AJ, Brower , M., 2015. Addressing global mortality from ambient PM2.5. Environ. Sci.
Technol. 49, 8057–8066 . https://doi.org/10.1021/acs.est. 5b01236 .
Casari , M., Kowalski, PA, & Poe, L. (2024a). Optimization of the adaptive neuro -fuzzy inference system for adjusting
low-cost sensors PM concentrations. Ecological Informatics , 83 , 102781. https://doi.org/10.1016/j.ecoinf.2024.102781
Casari , M., & Poe, L. (2024a). MitH : A framework for Mitigating Hygroscopicity in low-cost PM sensors. Environmental
Modeling & Software , 173 , 105955. https://doi.org/10.1016/j.envsoft.2024.105955
Chen, G., Jin, Z., Li, S., Jin, X., Tong, S., Liu, S., Yang, Y., Huang, H., & Guo , Y. (2018a). Early life exposure to particulate
matter air pollution (PM1, PM2.5 and PM10) and autism in Shanghai, China: A case-control study. Environment
International , 121 , 1121–1127. https://doi.org/10.1016/j.envint.2018.10.026
Fang, X., Chang, R., Zhang, Y., Zuo , J., Zou , Y., & Han, Y. (2024a). Monitoring airborne particulate matter from
building construction: A systematic review. Journal of Building Engineering , 86 , 108708. https://doi.org/10.1016/j.
jobe.2024.108708
Gautam , S., Samuel , C., Bhardwaj , A., Esfandabadi , ZS, Santosh , M., Gautam , AS, Joshi, A., Justin, A., Wessley
, GJJ, & James, E. (2021). Vertical profiling of atmospheric air pollutants in rural India: A case study on particulate
matter (PM10/PM2.5/PM1), carbon dioxide, and formaldehyde. Measurement , 185 , 110061. https://doi.org/10.1016/j.
measurement.2021.110061
Kumar, T., & Doss, A. (2023a). AIRO: Development of an Intelligent IoT -based Air Quality Monitoring Solution for Urban
Areas. Proceedings of Computer Science , 218 , 262–273. https://doi.org/10.1016/j.procs.2023.01.008
Lewis, SL, Russell, LM, McKinsey, JA, & Harris, WJ (2022a). Small contributions of dust to PM2.5 and PM10
concentrations measured downwind of Oceano Dunes. Atmospheric Environment , 294 , 119515. https://doi.
org/10.1016/j.atmosenv.2022.119515
Mahfouz, MM, Skok , G., Sciare , J., Pikridas , M., Alfarra , MR, Moosakutty , S., Alfoldy , B., Ivančič , M., Rigler , M.,
Gregorič , A., Podlipec , R., Lohmann , S., Hlawacek , G., Heller, R., Tutsak , E., & Močnik , G. (2024a). Contribution of
black carbon and desert dust to aerosol absorption in the atmosphere of the Eastern Arabian Peninsula. Atmospheric
Environment , 324 , 120427. https://doi.org/10.1016/j.atmosenv.2024.120427
Mamarikas , S., Matthias, V., Karl, M., Fink, L., Simonen , P., Keskinen , J., Maso , MD, Fridell , E., Moldanova ,
J., Hallquist , Å., Mellqvist , J., Conde , V., Verbeek , R., Duyzer , J., Van Dinther , D., Timonen , H., Jalkanen , J.,
Sundström , A., Majamäki , E., . . . Ntziachristos , L. (2023a). Assessing Shipping Induced Emissions Impact on Air
Quality with Various Techniques: Initial Results of the SCIPPER project. Transportation Research Procedia , 72 ,
–2148. https://doi.org/10.1016/j.trpro.2023.11.699
Muhwu , JN, Fendji , M., & Ekengoue , C. (2025a). Design and implementation of a solar powered kit for measurement
and logging of environmental parameters using the SEN55 sensor. Deleted Journal , 100038. https://doi.org/10.1016/j.
meaene.2025.100038
Uzbekov , U., Arifjanov , A., Ergashev , O., Khamroeva , F., Bekkulov , I., Karimov , Y., & Ismatov , J. (2024). Climate
risk assessment in Uzbekistan: Surface air temperature anomaly for 2080-2099. E3S Web of Conferences , 563 ,
https://doi.org/10.1051/e3sconf/202456303008
Weld, MI ‘ ., Pandolfi , M., Amato, F., Pérez, N., Reche , C., Dominutti , P., Jaffrezo , J., Alastuey , A., Querol , X., & Uzu ,
G. (2022a). Discovering oxidative potential (OP) drivers of atmospheric PM10, PM2.5, and PM1 simultaneously in North-
Eastern Spain. The Science of the Total Environment , 857 , 159386. https://doi.org/10.1016/j.scitotenv.2022.159386
Wang, Y., Liu, Q., Tian , Z., Cheng, B., Guo , X., Wang, H., Zhang, B., Hu , Y., Sun, L., Hu, B., Chen, G., Sheng, J.,
Liang, C., Tao, F., Wei, J., & Yang, L. (2023a). Short-term effects of ambient PM1, PM2.5, and PM10 on internal metal/
metalloid profiles in older adults: A distributed lag analysis in China. Environment International , 182 , 108341. https://
doi.org/10.1016/j.envint.2023.108341
Alikhanov , B., Pulatov , B., & Samiev , L. (2024). Impact of climate change on the cryosphere of the Ugam Chatkal
National Park, Bostonliq District, Uzbekistan, during the Post-Soviet period, based on remote sensing and statistical
analysis. Forum Geography , 38 (3), 302–316. https://doi.org/10.23917/forgeo.v38i3.4405
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 YASHIL IQTISODIYOT VA TARAQQIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.