The methodology for using a PM1-PM10 collection device in Uzbekistan is relevant to the climatic conditions

The methodology for using a PM1-PM10 collection device in Uzbekistan is relevant to the climatic conditions

Authors

  • Bakhtiyor Pulatov
  • Bobur Sadriddinov

DOI:

https://doi.org/10.5281/zenodo.15848915

Keywords:

PM1, PM10, climate conditions, air pollution, environmental monitoring, industrial development, urbanization, particle collection, health, innovative technologies, monitoring system, air quality, dust concentration

Abstract

A number of factors are important in increasing the relevance of the issue of creating a PM1 and PM10
particle collection device in the climatic conditions of Uzbekistan. The arid and semi-arid climate of Uzbekistan leads to
an increase in the concentration of dust and particles in the air. As a result of climate change, industrial development and
urbanization processes, the level of air pollution is increasing, which requires monitoring of PM1 and PM10 particles.
These particles can negatively affect human health, cause the development of respiratory and cardiovascular diseases.
The growth of industry and the increase in vehicles increases the amount of PM1 and PM10 particles in the air. Monitoring
and collecting particles allows the state and the public to assess the level of air pollution. With the help of modern
technologies, the processes of detecting and collecting PM1 and PM10 particles are being improved. By creating
innovative devices, it is possible to develop effective solutions that are suitable for climatic conditions. This study aims
to analyze the relevance of creating a PM1 and PM10 particle collection device in the climatic conditions of Uzbekistan

Author Biographies

Bakhtiyor Pulatov

Research Institute of Environment and Nature Conservation Technologies

Bobur Sadriddinov

Research Institute of Environment and Nature Conservation Technologies

References

Abbasi , S., Keshavarzi , B., Moore, F., Hopke , PK, Kelly, FJ, Dominguez, AO, 2020. Elemental and magnetic analyses,

source identification , and oxidative potential of airborne, passive, and street dust particles in Asaluyeh County, Iran.

Sci. Total Environ. 707, 136132. https://doi.org/10.1016/j.scitotenv.2019.136132 .

Alastuey , A., Minguillón , C., Pérez, N., Querol , X., Viana , M., de Leeuw , F., 2011. The European Topic Center on

Air Pollution and Climate Change Mitigation (ETC/ACM) Is a Consortium of European Institutes Under Contract of the

European Environment Agency RIVM UBA-V ÖKO AEAT EMISIA CHMI NILU INERIS PBL CSIC.

Amato, F., Pandolfi , M., Escrig , A., Querol , X., Alastuey , A., Pey , J., Perez, N., Hopke , PK, 2009a. Quantifying road

dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmosphere. Environ. 43,

– 2780. https://doi.org/10.1016/j . atmosenv.2009.02.039 .

Amato, F., Pandolfi , M., Viana , M., Querol , X., Alastuey , A., Moreno, T., 2009b . Spatial and chemical patterns of

PM10 in road dust deposited in urban environment. Atmosphere. Environ. 43, 1650 – 1659. https://doi.org/10.1016/j.

atmosenv.2008.12.009 .

Amato, F., Alastuey , A., Karanasiou , A., Lucarelli , F., Nava, S., Calzolai , G., Severi , M., Becagli , S., Gianelle , VL,

Colombi , C., Alves , C., Custódio , D., Nunes , T., Cerqueira , M., Pio , C., Eleftheriadis , K., Diapouli , C. , E., Reche

, C., Minguillón , MC, Manousakas , MI, Maggos , T., Vratolis , S., Harrison, RM, Querol , X., 2016. AIRUSE-LIFE+: a

harmonized PM speciation and source apportionment in five southern European cities. Atmosphere. Chem. Phys. 16,

–3309 . https://doi.org/10.5194/acp-16-3289-2016 .

Apte , JS, Marshall, JD, Cohen, AJ, Brower , M., 2015. Addressing global mortality from ambient PM2.5. Environ. Sci.

Technol. 49, 8057–8066 . https://doi.org/10.1021/acs.est. 5b01236 .

Casari , M., Kowalski, PA, & Poe, L. (2024a). Optimization of the adaptive neuro -fuzzy inference system for adjusting

low-cost sensors PM concentrations. Ecological Informatics , 83 , 102781. https://doi.org/10.1016/j.ecoinf.2024.102781

Casari , M., & Poe, L. (2024a). MitH : A framework for Mitigating Hygroscopicity in low-cost PM sensors. Environmental

Modeling & Software , 173 , 105955. https://doi.org/10.1016/j.envsoft.2024.105955

Chen, G., Jin, Z., Li, S., Jin, X., Tong, S., Liu, S., Yang, Y., Huang, H., & Guo , Y. (2018a). Early life exposure to particulate

matter air pollution (PM1, PM2.5 and PM10) and autism in Shanghai, China: A case-control study. Environment

International , 121 , 1121–1127. https://doi.org/10.1016/j.envint.2018.10.026

Fang, X., Chang, R., Zhang, Y., Zuo , J., Zou , Y., & Han, Y. (2024a). Monitoring airborne particulate matter from

building construction: A systematic review. Journal of Building Engineering , 86 , 108708. https://doi.org/10.1016/j.

jobe.2024.108708

Gautam , S., Samuel , C., Bhardwaj , A., Esfandabadi , ZS, Santosh , M., Gautam , AS, Joshi, A., Justin, A., Wessley

, GJJ, & James, E. (2021). Vertical profiling of atmospheric air pollutants in rural India: A case study on particulate

matter (PM10/PM2.5/PM1), carbon dioxide, and formaldehyde. Measurement , 185 , 110061. https://doi.org/10.1016/j.

measurement.2021.110061

Kumar, T., & Doss, A. (2023a). AIRO: Development of an Intelligent IoT -based Air Quality Monitoring Solution for Urban

Areas. Proceedings of Computer Science , 218 , 262–273. https://doi.org/10.1016/j.procs.2023.01.008

Lewis, SL, Russell, LM, McKinsey, JA, & Harris, WJ (2022a). Small contributions of dust to PM2.5 and PM10

concentrations measured downwind of Oceano Dunes. Atmospheric Environment , 294 , 119515. https://doi.

org/10.1016/j.atmosenv.2022.119515

Mahfouz, MM, Skok , G., Sciare , J., Pikridas , M., Alfarra , MR, Moosakutty , S., Alfoldy , B., Ivančič , M., Rigler , M.,

Gregorič , A., Podlipec , R., Lohmann , S., Hlawacek , G., Heller, R., Tutsak , E., & Močnik , G. (2024a). Contribution of

black carbon and desert dust to aerosol absorption in the atmosphere of the Eastern Arabian Peninsula. Atmospheric

Environment , 324 , 120427. https://doi.org/10.1016/j.atmosenv.2024.120427

Mamarikas , S., Matthias, V., Karl, M., Fink, L., Simonen , P., Keskinen , J., Maso , MD, Fridell , E., Moldanova ,

J., Hallquist , Å., Mellqvist , J., Conde , V., Verbeek , R., Duyzer , J., Van Dinther , D., Timonen , H., Jalkanen , J.,

Sundström , A., Majamäki , E., . . . Ntziachristos , L. (2023a). Assessing Shipping Induced Emissions Impact on Air

Quality with Various Techniques: Initial Results of the SCIPPER project. Transportation Research Procedia , 72 ,

–2148. https://doi.org/10.1016/j.trpro.2023.11.699

Muhwu , JN, Fendji , M., & Ekengoue , C. (2025a). Design and implementation of a solar powered kit for measurement

and logging of environmental parameters using the SEN55 sensor. Deleted Journal , 100038. https://doi.org/10.1016/j.

meaene.2025.100038

Uzbekov , U., Arifjanov , A., Ergashev , O., Khamroeva , F., Bekkulov , I., Karimov , Y., & Ismatov , J. (2024). Climate

risk assessment in Uzbekistan: Surface air temperature anomaly for 2080-2099. E3S Web of Conferences , 563 ,

https://doi.org/10.1051/e3sconf/202456303008

Weld, MI ‘ ., Pandolfi , M., Amato, F., Pérez, N., Reche , C., Dominutti , P., Jaffrezo , J., Alastuey , A., Querol , X., & Uzu ,

G. (2022a). Discovering oxidative potential (OP) drivers of atmospheric PM10, PM2.5, and PM1 simultaneously in North-

Eastern Spain. The Science of the Total Environment , 857 , 159386. https://doi.org/10.1016/j.scitotenv.2022.159386

Wang, Y., Liu, Q., Tian , Z., Cheng, B., Guo , X., Wang, H., Zhang, B., Hu , Y., Sun, L., Hu, B., Chen, G., Sheng, J.,

Liang, C., Tao, F., Wei, J., & Yang, L. (2023a). Short-term effects of ambient PM1, PM2.5, and PM10 on internal metal/

metalloid profiles in older adults: A distributed lag analysis in China. Environment International , 182 , 108341. https://

doi.org/10.1016/j.envint.2023.108341

Alikhanov , B., Pulatov , B., & Samiev , L. (2024). Impact of climate change on the cryosphere of the Ugam Chatkal

National Park, Bostonliq District, Uzbekistan, during the Post-Soviet period, based on remote sensing and statistical

analysis. Forum Geography , 38 (3), 302–316. https://doi.org/10.23917/forgeo.v38i3.4405

Downloads

Published

2025-06-01

How to Cite

Pulatov, B., & Sadriddinov, B. (2025). The methodology for using a PM1-PM10 collection device in Uzbekistan is relevant to the climatic conditions. GREEN ECONOMY AND DEVELOPMENT, 3(6). https://doi.org/10.5281/zenodo.15848915
Loading...