Iqtisodiyot tarmoqlarida suv iste’molini boshqaruvining raqamlashtirish tashkiliy-iqtisodiy mexanizmlarini takomillashtirish istiqbollari

Iqtisodiyot tarmoqlarida suv iste’molini boshqaruvining raqamlashtirish tashkiliy-iqtisodiy mexanizmlarini takomillashtirish istiqbollari

Authors

  • Anvarjon Karimov

DOI:

https://doi.org/10.5281/zenodo.15249225

Keywords:

raqamlashtirish, suv resurslari, iqtisodiy mexanizmlar, samaradorlik, boshqaruv, transformatsiya

Abstract

Maqolada iqtisodiyot tarmoqlarida suv resurslarini samarali boshqarish masalasiga zamonaviy yondashuvlar
tahlil qilinadi. Xususan, raqamli texnologiyalar yordamida suv iste’molini boshqarishning tashkiliy va iqtisodiy
mexanizmlari o‘rganiladi. Tadqiqotda ushbu raqamlashtirish mexanizmlarining amaliy qo‘llanilishi, ularning samaradorlik
darajasi, iqtisodiy foydadorligi va resurslar monitoringidagi roli asoslab berilgan. Shuningdek, raqamli yechimlarning
suv tejash, xarajatlarni kamaytirish va resurslar boshqaruvida shaffoflikni ta’minlashdagi istiqbollari ilmiy tahlil asosida
yoritilgan. Maqola natijalari iqtisodiyot tarmoqlarida raqamli transformatsiya orqali suv resurslaridan oqilona foydalanish
strategiyalarini ishlab chiqishda metodologik asos bo‘lib xizmat qilishi mumkin

Author Biography

Anvarjon Karimov


ADU, “Kompyuter injiniringi” kafedrasi o‘qituvchisi

References

Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323. https://

doi.org/10.1126/sciadv.1500323

Gosling, S.N., Arnell, N.W., 2016. A global assessment of the impact of climate change on water scarcity. Clim. Change

, 371–385. https://doi.org/10.1007/s10584-013-0853-x

Ridoutt, B.G., Baird, D., Anastasiou, K., Hendrie, G.A., 2021. An assessment of the water use associated with

Australian diets using a planetary boundary framework. Public Health Nutr. 24, 1570–1575. https://doi.org/10.1017/

S1368980021000483

Hachimi, C., El Belaqziz, S., Khabba, S., Sebbar, B., Dhiba, D., Chehbouni, A., 2023. Smart weather data management

based on artificial intelligence and big data analytics for precision agriculture. Agriculture 13. https://doi.org/10.3390/

agriculture13010095

Sun, H., Zhang, X., Wang, E., Chen, S., Shao, L., 2015. Quantifying the impact of irrigation on groundwater reserve

and crop production – a case study in the North China Plain. Eur. J. Agron. 70, 48–56. https://doi.org/10.1016/j.

eja.2015.07.001

Hassoun, A., Kamiloglu, S., Garcia-Garcia, G., Parra-López, C., Trollman, H., Jagtap, S., Aadil, R.M., Esatbeyoglu, T.,

Implementation of relevant fourth industrial revolution innovations across the supply chain of fruits and vegetables:

a short update on Traceability 4.0. Food Chem. 409, 135303. https://doi.org/10.1016/j.foodchem.2022.135303

Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J., 2017. Big data in smart farming – a review. Agric. Syst. 153, 69–80.

https://doi.org/10.1016/j.agsy.2017.01.023

Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine learning in agriculture: a review. Sensors

https://doi.org/10.3390/s18082674

Marques, P., Pádua, L., Sousa, J.J., Fernandes-Silva, A., 2024. Advancements in remote sensing imagery applications

for precision management in olive growing: a systematic review. Remote Sens. 16. https://doi.org/10.3390/rs16081324

Woods, J., Williams, A., Hughes, J.K., Black, M., Murphy, R., 2010. Energy and the food system. Philos. Trans. R. Soc.

B: Biol. Sci. https://doi.org/10.1098/rstb.2010.0172

Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., Li, Z., 2018. A high-performance and in-season

classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote

Sens. Environ. 210, 35–47. https://doi.org/10.1016/j.rse.2018.02.045

Kumar Singh, D., Sobti, R., 2022. Long-range real-time monitoring strategy for precision irrigation in urban and rural

farming in society 5.0. Comput. Ind. Eng. 167, 107997. https://doi.org/10.1016/j.cie.2022.107997

Awais, M., Li, W., Cheema, M.J.M., Zaman, Q.U., Shaheen, A., Aslam, B., Zhu, W., Ajmal, M., Faheem, M., Hussain,

S., Nadeem, A.A., Afzal, M.M., Liu, C., 2022. UAV-based remote sensing in plant stress imaging using high-resolution

thermal sensor for digital agriculture practices: a meta-review. Int. J. Environ. Sci. Technol. 2021 20 (1), 1135–1152.

https://doi.org/10.1007/S13762-021-03801-5

Fan, L., Xiao, Q., Wen, J., Liu, Q., Jin, R., You, D., Li, X., 2015. Mapping high-resolution soil moisture over heterogeneous

cropland using multi-resource remote sensing and ground observations. Remote Sens. 7, 13273–13297. https://doi.

org/10.3390/rs71013273

Al Mashhadany, Y., Alsanad, H.R., Al-Askari, M.A., Algburi, S., Taha, B.A., 2024. Irrigation intelligence enabling a cloudbased

Internet of Things approach for enhanced water management in agriculture. Environ. Monit. Assess. 196, 438.

https://doi.org/10.1007/s10661-024-12606-1

Munaganuri, R.K., Rao, Y.N., 2024. PAMICRM: improving precision agriculture through multimodal image analysis for

crop water requirement estimation using multidomain remote sensing data samples. IEEE Access 12, 52815–52836.

https://doi.org/10.1109/ACCESS.2024.3386552

Downloads

Published

2025-04-07
Loading...