Iqtisodiyot tarmoqlarida suv iste’molini boshqaruvining raqamlashtirish tashkiliy-iqtisodiy mexanizmlarini takomillashtirish istiqbollari
DOI:
https://doi.org/10.5281/zenodo.15249225Keywords:
raqamlashtirish, suv resurslari, iqtisodiy mexanizmlar, samaradorlik, boshqaruv, transformatsiyaAbstract
Maqolada iqtisodiyot tarmoqlarida suv resurslarini samarali boshqarish masalasiga zamonaviy yondashuvlar
tahlil qilinadi. Xususan, raqamli texnologiyalar yordamida suv iste’molini boshqarishning tashkiliy va iqtisodiy
mexanizmlari o‘rganiladi. Tadqiqotda ushbu raqamlashtirish mexanizmlarining amaliy qo‘llanilishi, ularning samaradorlik
darajasi, iqtisodiy foydadorligi va resurslar monitoringidagi roli asoslab berilgan. Shuningdek, raqamli yechimlarning
suv tejash, xarajatlarni kamaytirish va resurslar boshqaruvida shaffoflikni ta’minlashdagi istiqbollari ilmiy tahlil asosida
yoritilgan. Maqola natijalari iqtisodiyot tarmoqlarida raqamli transformatsiya orqali suv resurslaridan oqilona foydalanish
strategiyalarini ishlab chiqishda metodologik asos bo‘lib xizmat qilishi mumkin
References
Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323. https://
doi.org/10.1126/sciadv.1500323
Gosling, S.N., Arnell, N.W., 2016. A global assessment of the impact of climate change on water scarcity. Clim. Change
, 371–385. https://doi.org/10.1007/s10584-013-0853-x
Ridoutt, B.G., Baird, D., Anastasiou, K., Hendrie, G.A., 2021. An assessment of the water use associated with
Australian diets using a planetary boundary framework. Public Health Nutr. 24, 1570–1575. https://doi.org/10.1017/
S1368980021000483
Hachimi, C., El Belaqziz, S., Khabba, S., Sebbar, B., Dhiba, D., Chehbouni, A., 2023. Smart weather data management
based on artificial intelligence and big data analytics for precision agriculture. Agriculture 13. https://doi.org/10.3390/
agriculture13010095
Sun, H., Zhang, X., Wang, E., Chen, S., Shao, L., 2015. Quantifying the impact of irrigation on groundwater reserve
and crop production – a case study in the North China Plain. Eur. J. Agron. 70, 48–56. https://doi.org/10.1016/j.
eja.2015.07.001
Hassoun, A., Kamiloglu, S., Garcia-Garcia, G., Parra-López, C., Trollman, H., Jagtap, S., Aadil, R.M., Esatbeyoglu, T.,
Implementation of relevant fourth industrial revolution innovations across the supply chain of fruits and vegetables:
a short update on Traceability 4.0. Food Chem. 409, 135303. https://doi.org/10.1016/j.foodchem.2022.135303
Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.-J., 2017. Big data in smart farming – a review. Agric. Syst. 153, 69–80.
https://doi.org/10.1016/j.agsy.2017.01.023
Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine learning in agriculture: a review. Sensors
https://doi.org/10.3390/s18082674
Marques, P., Pádua, L., Sousa, J.J., Fernandes-Silva, A., 2024. Advancements in remote sensing imagery applications
for precision management in olive growing: a systematic review. Remote Sens. 16. https://doi.org/10.3390/rs16081324
Woods, J., Williams, A., Hughes, J.K., Black, M., Murphy, R., 2010. Energy and the food system. Philos. Trans. R. Soc.
B: Biol. Sci. https://doi.org/10.1098/rstb.2010.0172
Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., Li, Z., 2018. A high-performance and in-season
classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote
Sens. Environ. 210, 35–47. https://doi.org/10.1016/j.rse.2018.02.045
Kumar Singh, D., Sobti, R., 2022. Long-range real-time monitoring strategy for precision irrigation in urban and rural
farming in society 5.0. Comput. Ind. Eng. 167, 107997. https://doi.org/10.1016/j.cie.2022.107997
Awais, M., Li, W., Cheema, M.J.M., Zaman, Q.U., Shaheen, A., Aslam, B., Zhu, W., Ajmal, M., Faheem, M., Hussain,
S., Nadeem, A.A., Afzal, M.M., Liu, C., 2022. UAV-based remote sensing in plant stress imaging using high-resolution
thermal sensor for digital agriculture practices: a meta-review. Int. J. Environ. Sci. Technol. 2021 20 (1), 1135–1152.
https://doi.org/10.1007/S13762-021-03801-5
Fan, L., Xiao, Q., Wen, J., Liu, Q., Jin, R., You, D., Li, X., 2015. Mapping high-resolution soil moisture over heterogeneous
cropland using multi-resource remote sensing and ground observations. Remote Sens. 7, 13273–13297. https://doi.
org/10.3390/rs71013273
Al Mashhadany, Y., Alsanad, H.R., Al-Askari, M.A., Algburi, S., Taha, B.A., 2024. Irrigation intelligence enabling a cloudbased
Internet of Things approach for enhanced water management in agriculture. Environ. Monit. Assess. 196, 438.
https://doi.org/10.1007/s10661-024-12606-1
Munaganuri, R.K., Rao, Y.N., 2024. PAMICRM: improving precision agriculture through multimodal image analysis for
crop water requirement estimation using multidomain remote sensing data samples. IEEE Access 12, 52815–52836.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 YASHIL IQTISODIYOT VA TARAQQIYOT

This work is licensed under a Creative Commons Attribution 4.0 International License.